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Given a parametric plane curve p and any Bhier curve q of degree n such that
p and q have contact of order k at the common end points, we use the normal
vector field of p to measure the distance of corresponding points of p and q.
Applying the theory of nonlinear Chebyshev approximation, we show that the
maximum norm of this distance (or error) function Pq is locally minimal for q if and
only if Pq is an allemant with 2· (n - k -I) + I extreme points. Finally, a Remes
type algorithm is presented for the numerical computation of a locally best
approximation to p. 1994 Academic Press. Inc.

INTRODUCTION

In CAGD, several methods have been developed for the approximation
of a given regular parametric curve p: [0, 1] ~ fR2 by a Bezier curve q of
fixed degree n, where p and q are supposed to have contact of order k at
the end points (see, e.g., H6lzle [8], Hoschek [9], de Boor et al. [I], and
for circular arcs, Dokken et at. [5] and Goldapp [7]). Assuming that there
is a unique continuous reparametrization <p: [0, 1] ~ [0, 1] such that for
each S E [0, 1] the point q(<p(s)) lies on the oriented normal of p at s,
W. Degen [4] has introduced the error function Pq : SI---7 ± Iq(<p(s)) - P(S)12'
In many cases the maximum norm IPql yj of Pq is equal to the Hausdorff
distance of p and q (see Degen [4]), and we call q a best approximation
to p if Ip loc is minimal for the Bezier curve q. In some cases Degen has
characteri~eda best approximation q to p by an alternation property of the
error function P q by using a theorem of Meinardus and Schwedt.

In this paper we prove for arbitrary n EN and all possible kENo that a
Bezier curve q is a 10caIly best approximation to p if and only if the error
function Pq alternates at 2· (/1- k - I) + I extreme points and that a locally
best approximation is 10caIly unique (Theorem 2.9). In particular, we show
that two approximating Bezier curves 10calIy have only 2n - 1 intersections
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(Theorem 2.7). Moreover, a best approximation can be calculated by a
Remes type algorithm (see Section 2.11 ).

In Section I we introduce the class of admissible curves for which the
error function and the normal distance to p are defined. In Section 2 we
modify the nonlinear theory of Rice [15 J and then apply it to our family
of error functions. This leads to a nonlinear system of equations, discussed
in Section 3. Finally, our main results are proved in Section 4.

I. NOTATIONS, THE ERROR FUNCTION, AND THE NORMAL DISTANCE

Henceforth, let I denote the unit interval [0, I], and qo, I] is under­
stood to be the space of continuous functions f: 1-> IR endowed with the
uniform norm If Ix := max/E/lf(t)l. If k is a positive integer, then any at
least k-times continuously differentiable map x: 1-> 1R 2 is called C k curve,
a continuous map x: 1-> 1R 2 is called CO curve, and an at least k-times
continuously differentiable bijective function cc 1-> I such that'l'(t) > °for
every tEl is called C k reparametrization. Finally, a C I curve x satisfying
i(s):=(dx/dt)(s)=I-(O,O) for every sEI is called regular curve. The
following parametrization-independent concept of contact of two curves at
a common end point, also known as geometric continuity, is crucial in
CAGD when fitting together several curve segments to a whole one (cf.
[10, 5J).

DEFINITION (d. [3, 3.3.2]). Let s E {O, I } and kEN o. Two C k curves x
and y have contact of order k at s iff x(s) = y(s) and in case k > °there are
C k reparametrizations'l and [3 such that

d'(x a) di(y [3)
dt l (.1')= dt} (.1'), j= I, ... , k.

For example, two C I curves x and y have contact of order one at °and
I if and only if x and y have common end points and there are l, fJ. > 0
such that i(O)=),·y(O) and i(I)=II·y(I).

For the remainder of this paper, let p = (PI' P2): 1:= [0, I] -> 1R 2 be a
fixed regular curve (injectivity is not supposed) to be approximated. Using
the normal vector field of p, we now introduce the class of admissible cur­
ves with respect to p for which the normal distance to p can be defined:

1.2. DEFINITION. A regular curve q: 1-> 1R 2 is said to be admissible with
respect to p if and only if

(I) q(s)=p(s), .1'=0, 1.
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FIG, L Admissible parabola q,
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(2) There exists a unique strictly increasing bijective map ({J q: I -> I
such that, for each s E I, the point q( ({J q(s)) lies on the normal
N(s) := {p(s) + t . n(s) I t E IR} of p at s, where n(s) denotes the unit normal
vector liJl;,I .(-P2' PI) of p at s.

(3) The tangent vector q«({Jq(s») of q is not parallel to n(s) for every
s E I.

If q is an admissible curve (Fig. 1), then there is a unique continuous
map Pq: 1-+ IR satisfying q«({Jq(s»=p(s)+Pq(s)·n(s) for every sEI, where
Pq(O) = p q(1) = O. This implies IPq(s)1 = Iq«({Jq(s)) - P(S)12' s E I, where
1·12 denotes the Euclidean norm in 1R 2. Hence we define (see Degen [4,
Definition 2]):

1.3. DEFINITION. Let q be an admissible curve. Then the map Pq is
called error function of q with respect to p and d(q):= Iplxc normal
distance from q to p.

1.4. Remarks. (a) Using the implicit function theorem, one can easily
show that, for each admissible curve q, the functions ({Jq and Pq are at least
of class C 1 if p is at least of class C 2.

(b) If p is a segment of the unit circle (cf. [5, p. 35; 7]), then
d(q)= Ilq12-11 xc for each admissible curve q.

(c) Pq is constant if and only if Pq =' O.

We now introduce some classes of admissible polynomial curves for the
approximation of p. For this, let n;;3 2 be a fixed natural number, and for
any n+l points ai EIR 2 (i=O, ...,n) and a:=(ao, ...,all ) let p. denote the
polynomial curve L:;'~o a/·t i (tEl). Clearly, we can write p. as Bezier
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curve, but for our proofs it is more convenient to use Taylor expansion.
For the sake of brevity, we put:

A := {a = (ao, ..., all) 1 ajE [R2(i= 0, ..., n), all =1= (0,0),

and res( Pc' Pd ) =1=°if P a = (Pc' Pd ) }, (1.1 )

where res(Pc' Pd ) denotes the resultant of the two polynomial coordinate
functions of the derivative i\ of P a' The property res(Pc' Pd ) =1= °is used in
the proofs of Section 4 (d. Section 3.1) and implies that the curve Pais
regular (see Walker [16, p. 24]). Moreover, it follows that A is an open
subset of [R21l + 2. The set A and subsets of A are always endowed with the
trace of the Euclidean topology.

For the remainder of this paper, let there be an open nonempty subset
B of Ac[R21l+2 such that each curve qE{PalaEB and Pa(s)=p(s),
S = 0, I} is admissible, and for k E {O, ..., n - 2} put

Bk := {a E B I P a and p have contact of order k at °and I}. (1.2)

Note that the sets Bk are not open. If k E {O, ... , n - 2} is given, we always
suppose B k =1= 0. Furthermore, we define mappings ¢J: Bo x 1-> 1 and
£: Bo x 1 -> [R by letting

¢;(a, s) := (fJIPal(S) and £(a,s):=p(p)s),(a,s)EBox!. (1.3)

By [4, Theorem 2], ¢J and £ are continuous. This paper addresses to the
following problem: For given k E {O, ... , n - 2} characterize each a E Bk for
which there is a neighborhood U c B of a satisfying

d(P a) = I£(a, .) - 01 C,," ~ d(P b ) = I£(b, .) - 0l:le for all bE B k n U,

(1.41

i.e., £(a,') is a locally best uniform approximation to !:=°in B k • This
Chebyshev approximation problem is solved in the next section (see
Theorem 2.9). A polynomial curve P a (aEBk ) satisfying (1.4) for some
neighborhood U of a is called a locally best GCk-approximation to p. It
remains open whether there actually can be several locally best GC k

­

approximations.

2. A MODIFICATION OF THE THEORY OF RICE AND MAIN RESULTS

In this section we assume that D is any nonempty subset of [R21l + 2, not
necessarily open, and F is any continuous mapping from D x 1 into IR.
Given a continuous function .f: 1-> [R and a point a E D, the function
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F(a, . ) : 1-+ IR is said to be a best approximation to f with respect to F if
IF(a, .) - fl x ~ IF(b, .) - fl ex for every bED. In Section 1, we always have
E(a, 0) = E(a, 1) = 0 for all aE B. Therefore, we assume F(a, 0) = F(a, 1) = 0
for every a E D, and hence we need an adaption of some definitions and
theorems of Rice (see [14J or [15, pp. 3-12J). If, in addition,
f(O) = f(1) = 0, then the problem of a nonzero constant error curve
F(a, . ) - f does not arise (cf. Braess [2, 3.16]).

2.1. DEFINITION. F is called locally solvent of degree mEN at a ED tl'ith

respect to ]0, 1[ iff given m points Sj with °< s/ < '" < Sm < 1 and t: > °
there is J;=<>(a,t:,s\> ...,sm»O such that YjEIR and IYj-F(a,s)I<J,
j = 1, ... , m, implies the existence of bED satisfying F( b, Si) = Yj' j = 1, ..., m,
and IF(a,') - F(b, . )1 eo < t:.

2.2. DEFINITION. F has Property Z of degree mEN at a E D with respect
to ]0, I [ iff, for any bED, the difference F(a, . ) - F(h, . ) has either at most
m - 1 zeros in ]0, 1[ or vanishes identically.

2.3. DEFINITION. F is called varisolvent with respect to ]0, t [ iff, at each
point a E D, both the local solvency and the Property Z w.r. to ]0, 1[ are
defined and have the same degree m(a).

2.4. DEFINITION. A continuous function f: [ -+ IR alternates (at least)
kEN times if and only if there are k + 1 values Sj E[ such that 0 ~ s 1 <
S2<'" <sk+l~l and f(s;) = -f(s;+d= ±Ifl.eo' i=I, ...,k.

2.5. THEOREM. Let f E C[O, 1] with f(O) = f(l ) = 0, a E D, and let F be
varisolvent w.r. to ]0, 1[. Then F(a,·) is a best approximation to .r iff
F(a, .) - f alternates at least m(a) times. Furthermore, there is at most one
best approximation to f

Proof If F(a,') - f is constant, then F(a, s) - f(s) = F(a, 0) - f(O) = 0
for every s E [ and the statement is obvious. Therefore, we may assume that
F(a, . ) - f is not constant. Now the proofs of Theorems 7-3 and 7-4 in
[15] (or [2, Theorems 3.9 and 3.10]) carryover. We only have to note
that IF(a, . ) - fl co is not assumed at both °and 1; i.e., the other case can
be omitted in [15, p. 11]. I

We now apply these definitions and theorems to restrictions of the
mapping E of Section 1. The involved proofs of the following two theorems
are postponed to Section 4.

2.6. THEOREM. For each k E {O, ..., n - 2} and each open subset U of B
with V;= B k n U i= 0, the restricted mapping E I(Vx II =; F is locally solvent
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offixed degree 2· (n - k - 1) at each bE V w.r. to ]0, 1[. In particular, this
is valid for V:= Bk.

Let k E {O, ..., n - 2} and a E Bk • If there is a neighborhood U of a in
[R2//+2 such that F:=EI1vxl) with V:=BknU has PropertyZ at each
bE V of fixed degree 2· (n - k - 1) or is varisolvent of fixed degree 2 . (n·­
k - I) w.r. to JO, I [, then E IIBk x I) is said to have local Property Z at a or
to be locally varisolvent at a of fixed degree 2· (n - k - 1) w.r. to ]0, 1[.
Now we have:

2.7. THEOREM. For each k E {O, ..., n - 2} and a E Bk , the mapping F:=
EI1BPl) has local Property Z at a affixed degree 2·(n-k-l) w.r. 10

]0, 1[.

2.8. COROLLARY. For each k E {O, ..., n - 2} and a E Bk , F:= E IIBp/) is
locally varisolvent at a of fixed degree 2· (n- k - 1) w.r. to ]0, 1[.

Putting f:= 0, we obtain from Theorem 2.5 a characterization and
uniqueness theorem for locally best GCk-approximations:

2.9. THEOREM. For each k E {O, ..., n - 2} and a E Bb the curve Pais a
locally hest GCk-approximation to the curve p if and only if E(a, . ) alternates
2· (n - k - 1) times. Furthermore, any such locally hest GCk-approximation
to p is the on!.v one in some neighhorhood oj' a.

In the cases n = 2, k = 0 and n = 3, k = I this theorem has been proved
by Degen [4].

2.10. Remarks. (a) For n=2 it IS immediate that EllBoXI) has
(global) Property Z of degree 2 w.r. to ]0, I [, because each curve P a'

a E A, is a parabola for n = 2.

(b) Since £(a,s)=£(b,.I') is equivalent to Pa(~(a,s))=Pb(~(b,s))

for all distinct a, bE Band s E I, the number of zeros of £(a, . ) - £(b, . ) in
I is equal to the number of local intersection points of P a and P b' By
Bezout's theorem, this number is less than or equal to n 2

, but Theorem 2.7
with k := 0 yields the better bound 2n - 1 in some neighborhood of a. It
remains open whether there are, in general, distinct, a, bE B such that
£(a, .) - £(b, . ) has more than 2n - 1 zeros.

(c) Let k l , k 2 E {O, ... , n-2}. Theorem 2.9 remains true if the
expression 2· (n - k - 1) is replaced by 2n- k} - k 2 - 2 and Bk is replaced
by the set {a E B I p and P a have contact of order k I at 0 and contact of
order k 2 at 1}.

2.11. Numerical computation. Using compactness arguments, the
existence of a (locally) best GC k-approximation P a to p, i.e., (1.4) is
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satisfied, can be established in many cases (cf. [15, p. 9]), and, by
Corollary 2.8, we may apply the Remes algorithm in the nonlinear case for
the numerical computation of Pa' We describe this method in case k := I
and n ~ 3. Then the solution P a admits a Bezier representation as follows:
Pa(t)=2::7=ob i ·C)·t'.(l_t)n-', where bo:=p(O), b,,:=p(l), b}:=bo+
).. P(O), bn _ 1 := bn -Ii . p( 1), and the values A, Ii E lR and b, E lR 2

(i = 2, ... , n - 2) are unknown. The error mapping E is not explicitly known
in contrast to Meinardus [12, 8.4], but, by Theorem 2.9, there are r := 2 .
(n - 2) + 1 values 51 E I with 0 < 51 < ... < 5, < 1, r values t l := ¢(a, 5,), and
a value dE {± IE(a,' )!",,} such that

p(5d - d· 0(5 1 ) = P a(t d

p(52) + d· 0(52) = P a(t2)

Now this nonlinear system of equations is solved by Newton's method with
2·r unknowns ;., jl., d, b, (i=2, ... ,n-2), and tj (j=I, ...,r) for fixed(l)
values 5j (j= 1, ..., r). For n:= 3 we have used the fixed values SI:= i/4 and
the initial values t,:=i/4 (i=1,2,3), A:=jl.:=~, and d~d(Pa)' If the
method converges, we obtain a first approximation P a,' Then numerically
calculate approximate values s: such that E(a l , s:) has a local minimum or
maximum (i= 1, ... , r). If 5,~5:, the procedure stops; otherwise replace s,
by 5 i (i = 1, ..., r) and solve the above system again. If p is a segment of the
unit circle, this method is fast and stable, and the results are the same as
in [5, p.40].

To illustrate the error function E(a, .) of the best GC l-approximation Pa

to p by Bezier cubics, i.e., n := 3 and k := 1, we have calculated the best
GCl-approximation to the Trisectrix of Maclaurin (see [11,4.7] with
parametrization: p(s) = a . (1 - 4· cos 2 S, tan s· (l - 4 . cos 2 .~)), where s:=
2.2· s - 1.1 and a := 1.7. We have obtained the distance d(pa) ~ 1.1846 and
three extreme points of E(a, .) (see dotted lines in Fig. 2).

3. A NONLINEAR SYSTEM OF EQUATlONS AND

ITS JACOBIAN AND DIVIDED DIFFERENCES

The results of this section are needed for the proofs of Theorems 2.6 and
2.7. In particular, the proof of the local solvency leads to the system of
Eqs. (3.2).

For every vector a=(aO,al, ...,al)EIR"+l, the polynomial function
t E IR r-+ 2::7=0 a, ' ( is denoted by Pa' We now introduce 4n polynomial
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FIGCRE 2

functions Flj' F~j from jR4n into jR4n for j = 1, ..., 2n. The 4n variables are
denoted by Co, ..., Cn , do, ... , dn , f 2 , ... , f 2n -1' and we define c := (co, ..., cn ),

d := (do, ..., dll)' t I := 0, f 21l := 1, x := (co, ... , Cn , do, ..., d ll , f 2 , ••. , f 21l - 1 ), and

j= 1, ..., 2n,

F:= (Fe I' ... , Fl. 2n' F2• I' ... , F2. 2n)'

(3.1 )

For given points (U j , Vi) E 1R 2, i = I, ..., 2n, the following nonlinear system of
equations will be of interest in Section 4 (t, and f 2n are constants!):

and .i = 1, ... , 2n. (3.2 )

Putting a:= «co, do), ..., (en, dn », the system (3.2) is equivalent to the
following interpolation problem for the polynomial curve P a = (Pc' Pd ):

j= 1, ..., 2n. (3.3 )

Since the vector a and the values fj (j = 2, ... , 2n - 1) are unknown,
there are points (uj ' v), j= 1, ..., 2n, such that the Eqs. (3.3) have no
solution. Applying the implicit function theorem to F, we show that the
system (3.3) is solvable in a neighborhood of a particular solution
(Xo; (ug, vg), ..., (u~, v~». To this end, we now compute the determinant of
the 4n x 4n Jacobian matrix dFjdz; i.e., the ith row of dFjdz consists of the
partial derivatives of the ith coordinate function of F.
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3.1. THEOREM.

Idet (~0 (X)1 = Ires(P~, P~)· ;,D I (tj- (;)1·
i<j

141

Primes indicate differentiation with respect to (, and res(P~, P~) denotes
the resultant of P~(t)=L7':d (i+ l)ci+l(; and P~(t) (see [16, p.24]).

Proof

o 0

o 0
o 0

("
2

1 (211-1 · (~1I-1 0
1 1 .. · 1 0

o 0 .. ·· ·0 1

o 0 1

o 0
o .......... ·.. ·0

o
o

o .. ·.. ·0

...... 1

o 0· .. ·0

P~(t2) 0 .... 0
o

P~(t2/1 I)
0"'0 0
o ........ 0

P~(t2) 0· .. · 0
o

P~(t 2/1 - tl
0 ........ 0

First, we expand this determinant by the first and the (212 + 1)th row. Then,
for i = n - 1, ..., 1, we subtract the ith column from the (i + 1)th column,
and for j = 2n - I, ..., 12 + I the jth column from the (j + 1)th column. This
yields the new determinant:

P;U,) 0···· 0

±
I 0 0

o 0

o ·· .. · .. ·0

o ........ 0

0···0 P;(l'n ,)

o · .. ·· .. ·0

P~(t1) 0··" 0

o 0

o . . . . . . . . . 0 0 .. · · ·0
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We now expand this determinant by the (2n - 1)th and by the (4n - 2 )th
row, then we multiply the ith row by - P~( 1i + I)' the (i + 2n - 2 )th row by
P~(I; + I)' and add the (i + 2n - 2 )th row to the ith row (i = 1, ... , 2n - 21.
Defining }';:=P~(I,)·P~(I;), :x:=U;:2 1 1';, and [J:=U;:2 1 1;·(1,-]), we
have obtained

( <iF)del dz (x)· 'X

-P~(t,)tg

o .... 0
= /f. ±

-P~(l2!/ d -P~lt211 J) I~" 2) P~lt2t1 \) P~lt2l1 I) 13n 2]

o 0 P~(t,) ,g P~(t,),~ ,
i 2 0 .. 0

= 'X ·/f· ±

o ...... · .. · .. ·0

P~(t,)lg··· 'P~(t,),~ ,

d l 2d2 nd" 0 ., . 0 I . ... .... ·1

0 d l 2d] nd" 0···0 1] t 211 _ I

= rJ.. [J. ±
0 0 d l 2d2 nd"...
C\ 2e 2

... nc" 0 0

0 CI 2e] " . ne" 0 0

0 ., . 0 ('I 2c2 ne" f2n - 3 1211
2 2n

The first determinant is the resultant of P~(I) and P~(1), the second
determinant is the Vandermonde determinant, and the factor :x may be
cancelled, completing the proof. I

If two or more values 1; coincide, then det(dFldz)(x) =0. Using the
following divided differences, we can transform the mapping F into an
"equivalent" mapping G with nonzero Jacobian.
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3.2. DEFINITION. Let q = (qj, q2) : 1--+ 1R 2 be a regular curve. Given
rEN+ and r+l points tiEIR U=O, ...,r) such that ql(tj)i=qj(td for all
j i= k, we define, by recursion, for k = 0, ... , r - I,

i=O, ... , 1',

and

L1 k + I(q)[ti , ... , t i + k + IJ

:= (L1 k(q)[t" ... , ti+kJ - L1 k(q)[ti+ [, ..., t'+k+ \])/(q\{t;) - q[{ti+k + 1)),

i = 0, ... , r - k - 1.

L1 r(q) is considered to be a function from the set D:= {(to, ... , tr)E
IR r+ I I L1.(q) [t (), ... , t r] is defined} into IR. If q I is strictly monotone on an
open or closed interval J c I such that t i E J for i = 0, ..., r, then
L1 r(q)[to, ... , t r ] is equal to the rth divided difference of the real function
q2 (ql I J) -I for the arguments ql(to), ... , ql(tr)' Hence we obtain from [13,
Chap. I, 1.8]:

3.3. PROPOSITION. Let q = (ql, q2): I --+ ~2 be a C r curve. Given an open
or closed subinterval J of I such that q; (t) i= 0 for every t E J, there is a
unique continuous extension of Llr(q) onto Dur+t, and Llr(q)[t, ..., t] =
(d r/ds r)(q2 oqll )(qj(t))/r! (t E J).

Contact of order r can be characterized by divided differences as follows:

3.4. PROPOSITION. Let q = (qj, q2): I - ~2 and q= (1]1,1]2): I --+ ~2 be
two regular c r curves, and let SE{O, I} such that q(s)=q(s) and q'[(s)·
1]'1 (s) > O. Then q and q have contact of order r ~ I at s ({ and only ({
Lldq)[so, ...,Sk]=L1 k(q)[so, ...,Sk] for k=O, ...,r, where Si:=S for k=
0, ... , r.

Proof Let q;(s»O (in case q;(s)<O use the transformation of coor­
dinates (XI' x 2 ) E ~2 f--+ (-Xl' X2))' Then there exists a neighborhood U of
s in I such that q; (t) > 0 and 1]; (t) > 0 for every t E U. Since contact of
order I' is a local property, we may consider the restricted curves q I(
and q Iu' Using the orientation preserving local reparametrizations qJ :=
(q 1 Iu) - I and i/J:= (I] 1 I(j') - I, we get equivalent parametrizations t f--+

(t, q2(qJ(t))) and t' f--+ (t', 1]2(i/J{t'))) of q Iu and q Iu' respectively, in a
neightborhood V of ql(s) = I]I(S). By [3, p.88, A3.3, Ex. 1], contact of
order I' of graphs of functions f:=Q20qJ and g :=i/20ij! at s' :=q\(s) is
equivalent to flk '(S') = glk '(S') for k = 0, ... , r. Proposition 3.3 now implies
the desired result. I
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4. PROOFS OF THEOREMS 2.6 AND 2.7

For any k E {O, ..., n - 2}, it is easier to establish the local solvency of
E II B, x I) than to establish the local Property Z at a point a EBk' Both
proofs can be based on the system of Eqs. (3.2) and the implicit function
theorem.

Proof of 2.6. (1) Let k:= 0 and U oF 0 be any open subset of B.
Moreover, let there be given aoE Bon U, t: > 0, and 2n values S i E I with
Sl := 0 < S2 < .. , < S2n := I. By Definition 2.1, we have to find <5 > 0 such
that the 2n-2 equations E(a,sJ=Yi' i=2, ...,2n-l, have a solution
aE Bon U with IE(a,·)- E(ao,' )In <t: if YiE IR and IYi- E(ao, Si)\ <0 for
i = 2, ... , 2n - I. By definition of E, we have to solve the 2n equations (note
that E and ¢J are not explicitly known):

i= I, ..., 2n, (*)

where Yl :=>'2n:=O, t l :=¢J(a,sd=O, and t 2n :=¢J(a,s2n)=1, i.e., the
points (u i , v,.), i = t, ... , 2n, t, = 0, and t 2n = 1 are given and a E Bon U and
t i E I, i = 2, ..., 2n - 1, are unknown. Thus we have obtained Eqs. (3.3) or
the equivalent system (3.2), where ((co, do), ..., (en, dn)) :=a. Furthermore,
if Yi:= E(ao, sJ, i= I, ..., 2n, then a o and the values ¢J(ao, s;), i=
2, ..., 2n-l, solve (3.2) and (*). This solution is denoted by X o' Moreover,
note that if the points a E 1R 2

n + 2 and t i E I, i = 2, ..., 2n - I, solve (*), and if
the values la-aoI2 , 1¢J(ao,s,)-til, and IYi-E(ao,sJI, i=2, ...,2n-l,
are sufficiently small, then we may conclude that a E U c B, a E Bo
(because P a(x) = p(x) for x = 0, I), t i = ¢J(a, sJ, and Yi = E(a, Si) for
i = 2, ..., 2n - 1, because ¢> and E are continuous and, by Definition 1.2(3),
each normal N(Si) meets Pain a unique point in a neighborhood of
P ao(¢J(a O' Si))'

Since s i #- Sj for i oF j and aoE Bo c A (see (1.1)), it follows from 3.1 that
the Jacobian determinant of F does not vanish at xo, and hence the
assertion follows from the implicit (or inverse) function theorem.

(2) Let k > 0, aoE Bb t: > 0, and let there be given 2n values Si E I such
that Sl:= "';=Sk+l :=0<Sk+2<'" <s2n-k:= ·":=S2n:=1. Following
along the same lines as in part (t) of this proof, we obtain the system of
equations (*), where Yt:=''':=Yk+l:=Y2n-k:=''';=Y2n:=0, t 1 :=
¢>(a, sd = 0, and t 2n := ¢>(a, S2,,) = I. Using the equivalent system of equa­
tions (3.2) instead of (*), we have the same solution xo as in part (1), but,
by 3.1 and assumption,det(dF/dz)(xo)=O and (3.2) does not imply aEBk .

Therefore, for r = 1, ... , k, we replace the equations F2. r + I (x)( = Pdt t r + t)) =
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Vr+1 and F2,2n_r(X)(=Pd(t2n_r»)=V2n_r with Vr+J :=P2(0) and V2n - r :=
P2(l) by the equations (cf. Definition 3,2):

and (**)

respectively (note p = (PI' P2»' Replacing the coordinate functions F2,r + I

and F2. 2n - r of F by the functions AAPe,Pd)[tl, ...,tr+J] and
A,(Pc, Pd)[t2n -" ,." t 2n ], respectively, r= I, ... , k, we obtain a new
mapping Gk • By 3.3, Gk is of class C I in a neighborhood of xo, if p'!(O) #0
and P; (1) # 0 (otherwise choose another Cartesian coordinate system in
JR2). Furthermore, equations Pc(t;)=PI(O), i=1, ... ,k+1, and Pc(t)=
PI(l), j=2n-k, ...,2n, with tl=O, t2n =1 imply t,='" =tk+I=O and
t 2n - k = '" =t2n =1 if Ix-xol2 is sufficiently small. Therefore, we may
conclude from Eqs. (**) and Proposition 3.4 that a E Bk if Ix - xOl2 is
sufficiently small (note B is open). By the first part of this proof, it remains
to show that the Jacobian of Gk does not vanish at xo, This follows from
the definition of divided differences and Lemma 4.1 below, because the
factors t; - tj can be cancelIed in det(dFldz) for 1 ~ i <j ~ k + 1 and
2n - k ~ i <j < 2n. For instance, if k = 1, then det(dGldz)(xo ) =
det(dFldz)(xo)/(P~(0)·p~(0)·(t2-td·(t2f1-t2f1_I»)' The details are left to
the reader, completing the proof. I

4.1. LEMMA. Let SEN, i, j, i', j'E {I, ...,s} with i#j and i'#j', and
let f", ...,Is, gl, ... , g, be continuously differentiable functions from an
open subset U of JR 2' into JR. Put H:= U;, , .r.., gj, ..., g,.) and H' :=
(f", ..., t - I' (t - f;)/( gj' - gi')' t + I' ... , Is, g I' , g,), where H' is defined on
the set D:= {ZE U I g;,(z) #gj'(z)}. Then det(dH'ldz)(a) = det(dHldz)(a)/
(gj'(a) - gi,(a)) for every a ED.

Proof For each k E {l, ..., 2s} - {j} and a E D the kth row of
A := (dHldz)(a) is equal to the kth row of B:= (dH'ldz)(a). Furthermore,
the kth component of the jth row of B is equal to

Therefore, the jth row of B is a linear combination of the vector v:=
(gj' - gi)-l (a)· «oDozd, ..., (ODoz2,)(a) and of the ith, (s + i')th, and
(s + j')th row of B. From this we derive that the jth row of det(B) may be
replaced by v, completing the proof. I
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Indirect proof of 2. 7. (I) Let k := 0 and ao E Bo. We assume that there
is no neighborhood Wc(R2,,+2 ofao such that EI(uxl! with U:= WnB k

has Property Z of degree 2· (n - I) at each bE U W.r. to JO, 1[. Then there
are two sequences (am)"'EN and (b"')"'EN in Bk converging to the point ao
such that a", # b", and E(a"" .) - E(b"" .) has at least 2(n - I) zeros. Hence,
for each 111 EN, there exist 2(n - I) values s~m) (i = 2, ..., 2n - I) with 0 <
s~") < .. , <s~;:~ 1< 1 such that for i= 2, ..., 2n - I:

(*)

and hence

Since [2(,,-1) is compact, there is a subsequence of (s~"), ...,S~;:II)"'EN
converging to a vector (.1'2' ... ,.1'2" I) with 0:(.1'2:( ... :(.1'2,,- 1:( 1 (see
[6, p. 217,6.1 and p.229, 3.2J).

Now let ao := «cg, dg), ..., (c?z, d?z)), X o= (cg, ... , c~:, dg, ..., d~:, tg, ..., tg" _d,
where t~:=¢l(ao,sJ, i=I, ... ,2n, with .1'1 :=0 and .1'2,,:=1. By (*), there is
no neighborhood V of X(J such that F Iv (see (3. I)) is injective (note that
(3.2) is equivalent to (3.3)). If 0<.1'2< ... <.1'211-1 < 1, then, by 3.1,
det(dFjidz)(X(J) #0 and so, by the implicit (or inverse) function theorem, F
is one-to-one in some neighborhood of X(J. This is a contradiction.

If two or more values Sj coincide, then, using divided differences, the
mapping F can be transformed into a C I mapping H such that H has a
nonzero Jacobian at X(J; but, because of (*), H is not one-to-one in any
neighborhood of Xu, a contradiction. We treat a special case and the
general case is left to the reader.

We assume n>3 and 0=.1'1=·\'2=.1'3<.1'4< .. , <.1'2" 2=.1'2,,_1<1.

Choosing another Cartesian coordinate system of (R2 if necessary, we may
assume P~(sd#O and P~C~2" 2)#0. We now define:

As in the proof of 2.6, part (2), it follows from the definition of divided
differences, Theorem 3.1, and Lemma 4.1 that the mapping H has the
desired properties. This completes the proof for k = 0.

(2) Let k > 0. Following along the same lines as for k = 0, we may
assume that there are sequences (a lll )IIIE," and (b"JIIIEN in Bk converging to
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aoEBk , 2n-2k-2 sequences (S:m))mE1'<p and values Sj, i=k+2, ..., 2n­
k - 1, such that

i = k +2, ... , 2n - k - 1 and mEN,

(* *)

O<S:m)<S::\ < 1, and a subsequence of (sjm»mEN converges to Sj' Since
am, bmE Bb we obtain from 3.4

r=O, ..., k and UE {O, 1}, (***)

where we have supposed that p; (0) ,e 0 and p; (l) ,e O. If the mapping G k is
defined as in part (2) of the proof of 2.6, then we conclude from (* *) and
(* * *) that there is no neighborhood V of the above solution Xo with
SI := ... :=Sk+ I :=0 and S2n-k:= '" :=s2n:= 1 such that Gk Iv is one-to­
one. IfO<sk+1 < ... <s2n-k-1 < 1, then det(dGk/dz)(xo),eO and we have
a contradiction. Otherwise Gk first must be transformed by divided dif­
ferences as above. In particular, if 0 = Sk + 1 = Sk + 2 or 1 = S2n _ k = S2n- k _ I'

then one must use confluent divided differences (see [13, p. 13J). The
details are left to the reader. I
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